
Chapter 5

Convergence

5.1 Types of Convergence

5.1.1 Almost Sure Convergence

Definition 5.1.1. A sequence of random variables Xn converges almost surely to another random variable
X if

P ( lim
n→∞

Xn = X) = 1

Or equivalently
P (s : Xn(s) → X(s)) = 1

and denoted as Xn
as→ X

5.1.2 Convergence in Mean

Definition 5.1.2. Let Xn be a sequence of random variable. Xn converges to X in the rth mean or in
the Lr norm to a random variable X if

lim
n→∞

E[|Xn −X|r] = 0

and denoted by Xn
Lr

→ X. We frequently use L1 and L2 convergence.

5.1.3 Convergence in Probability

Definition 5.1.3 (Converge in Probability). Let Xn be a sequence of random variables and let X be another
random variable. We say that Xn converges in probability to X if, for all ϵ > 0

lim
n→∞

P (|Xn −X| ≥ ϵ) = 0

or equivalently
lim
n→∞

P (|Xn −X| ≤ ϵ) = 1

We write as
Xn

P→ X

Theorem 5.1.1. Suppose Xn
P→ X, and a is a constant, then aXn

P→ aX
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Proof. Let ϵ > 0, then

P (|aXn − aX| ≥ ϵ) = P (|a||Xn −X| ≥ ϵ) = P (|Xn −X| ≥ ϵ/|a|)

Since Xn converges in probability to X, the above equation goes to 0 as n → ∞.

Theorem 5.1.2. Suppose Xn
P→ X and Yn

P→ Y , then Xn + Yn
P→ X + Y

Proof. Fix some ϵ > 0, we want to find

lim
n→∞

P (|Xn + Yn − (X + Y )| ≥ ϵ)

= lim
n→∞

P (|Xn + Yn −X − Y | ≥ ϵ)

= lim
n→∞

P (|Xn −X + Yn − Y | ≥ ϵ)

Notice that the event Xn −X + Yn − Y ≥ ϵ is a subset of event Xn −X ≥ ϵ/2 ∪ Yn − Y ≥ ϵ/2, hence:

≤ lim
n→∞

P (|Xn −X| ≥ ϵ/2 ∪ |Yn − Y | ≥ ϵ/2)

By probability axiom that P (A ∪B) ≤ P (A) + P (B)

≤ lim
n→∞

P (|Xn −X| ≥ ϵ/2) + P (|Yn − Y | ≥ ϵ/2)

Since Xn
P→ X and Yn

P→ Y , then

lim
n→∞

P (|Xn −X| ≥ ϵ/2) = 0 and lim
n→∞

P (|Yn − Y | ≥ ϵ/2) = 0

Therefore
P (|Xn −X| ≥ ϵ/2) + P (|Yn − Y | ≥ ϵ/2) = 0 + 0 = 0

Hence:

lim
n→∞

P (|Xn + Yn − (X + Y )| ≥ ϵ) ≤ lim
n→∞

P (|Xn −X| ≥ ϵ/2) + P (|Yn − Y | ≥ ϵ/2) = 0

Thus Xn + Yn
P→ X + Y by definition of convergence.

Theorem 5.1.3. Suppose Xn
P→ a and the real function g is continuous at a. Then g(Xn)

P→ g(a)

Proof. Let ϵ > 0, since g is continuous at a, by the definition of continuity, there exist δ > 0 such that if
|x− a| < δ, then |g(x)− g(a)| < ϵ, thus

|g(x)− g(a)| ≥ ϵ ⇒ |x− a| ≥ δ

Substituting Xn for x we obtain

|g(Xn)− g(a)| ≥ ϵ ⇒ |Xn − a| ≥ δ

and hence
P (|g(Xn)− g(a)| ≥ ϵ) ≤ P (|Xn − a| ≥ δ)

we know that P (|Xn−a| ≥ δ) converges to 0 as n → ∞ by definition, hence P (|g(Xn)−g(a)| ≥ ϵ) converges
to 0 as n → ∞ as well.

Theorem 5.1.4. Suppose Xn
P→ X and Yn

P→ Y , then XnYn
P→ XY
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Proof. We know that

(Xn − Yn)
2 = X2

n − 2XnYn + Y 2
n

2XnYn = X2
n + Y 2

n − (Xn − Yn)
2

XnYn =
1

2
X2

n +
1

2
Y 2
n − 1

2
(Xn − Yn)

2

Using the last theorem, we know that

P→ 1

2
X2 +

1

2
Y 2 − 1

2
(X − Y )2

= XY

5.1.4 Convergence in Distribution

Definition 5.1.4 (Converge in Distribution). LetXn be a sequence of random variables and let X be another
random variable. Let Fn and FX be, respectively, the cdfs of Xn and X. We say that Xn converges in
distribution to X if

lim
n→∞

Fn(x) = FX(x) at all x for which F is continuous

We write as Xn
D→ X or Xn ⇝ X

5.2 Relationship between Convergence

So far we have introduced four types of convergence. But do realize that some of these convergence types
are “stronger” than others and some are “weak”. By this, we mean the following: If Type A convergence is
stronger than Type B convergence, it means that Type A convergence implies Type B convergence. Figure
5.1 summarizes how these types of convergence are related. In this figure, the stronger types of convergence
are on top and, as we move to the bottom, the convergence becomes weaker. For example, using the figure,
we conclude that if a sequence of random variables converges in probability to a random variable X , then
the sequence converges in distribution to X as well.

Figure 5.1: Forms of convergence that imply other forms of convergence (source: wikipedia)

Theorem 5.2.1. If Xn
a.s→ X, then Xn

P→ X

Proof. This is almost obvious:

Xn
a.s→ X ⇒ P ( lim

n→∞
Xn = X) ⇒ P ( lim

n→∞
Xn −X = 0 < ϵ) ⇒ Xn

P→ X
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Theorem 5.2.2. If Xn
Lr

→ X for some r ≥ 1, then Xn
P→ X

Proof. For any ϵ > 0, we have

P (|Xn −X| > ϵ) = P (|Xn −X|r > ϵr)

Using Markov’s inequality

P (|Xn −X|r > ϵr) ≤ E[|Xn −X|r]
ϵ2

Since Xn
Lr

→ X, then limn→∞ E[|Xn −X|r] = 0, hence

lim
n→∞

P (|Xn −X|r > ϵr) ≤ 0

which is exactly what we need to prove.

Now we are going to show that convergence in probability implies convergence in distribution, but before
proving this theorem, we need to first prove a lemma

Lemma 5.2.3. Let X,Y be random variables, let a be a real number and ϵ > 0, then

P (Y ≤ a) ≤ P (X ≤ a+ ϵ) + P (|Y −X| > ϵ)

Proof.

P (Y ≤ a) = P (Y ≤ a ∩X ≤ a+ ϵ) + P (Y ≤ a ∩X > a+ ϵ) By the law of total probability

≤ P (X ≤ a+ ϵ) + P (Y ≤ a ∩X > a+ ϵ) P (A ∩B) ≤ P (A)

≤ P (X ≤ a+ ϵ) + P (Y −X ≤ a−X ∩X > a+ ϵ) Y ≤ a ⇒ Y −X ≤ a−X

≤ P (X ≤ a+ ϵ) + P (Y −X ≤ a−X ∩ a−X < −ϵ) X > a+ ϵ ⇒ a−X < −ϵ

≤ P (X ≤ a+ ϵ) + P (Y −X < −ϵ) Since Y −X ≤ a−X ∩ a−X < −ϵ

≤ P (X ≤ a+ ϵ) + P (Y −X < −ϵ) + P (Y −X > ϵ) ∀ω ∈ Ω, P (ω) ∈ [0, 1]

= P (X ≤ a+ ϵ) + P (|Y −X| > ϵ)

With the help of this lemma, we can now prove the following theorem easily

Theorem 5.2.4. If Xn
P→ X, then Xn

D→ X

Proof. Let ϵ > 0, and let Y = Xn, using the last lemma we get

P (Xn ≤ a) ≤ P (X ≤ a+ ϵ) + P (|Xn −X| > ϵ)

Let Y = X,X = Xn, a = a− ϵ, we get

P (X ≤ a− ϵ) ≤ P (Xn ≤ a) + P (|Xn −X| > ϵ)

⇒ P (X ≤ a− ϵ)− P (|Xn −X| > ϵ) ≤ P (Xn ≤ a)

Combining these two parts we get

P (X ≤ a− ϵ)− P (|Xn −X| > ϵ) ≤ P (Xn ≤ a) ≤ P (X ≤ a+ ϵ) + P (|Xn −X| > ϵ)

Taking limn→∞ we obtain
FX(a− ϵ) ≤ lim

n→∞
FX(Xn ≤ a) ≤ FX(a+ ϵ)

where FX is the CDF of X. As ϵ → 0+, we get

lim
n→∞

FX(Xn ≤ a) = P (X ≤ a)

which means Xn converges to X in distribution.
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Theorem 5.2.5. Let Xn, X, Yn, Y be random variables. Let g be a continuous function.

1. If Xn
P−→ X and Yn

P−→ Y , then Xn + Yn
P−→ X + Y .

2. If Xn
qm−−→ X and Yn

qm−−→ Y , then Xn + Yn
qm−−→ X + Y .

3. If Xn ⇝ X and Yn ⇝ c, then Xn + Yn ⇝ X + c.

4. If Xn
P−→ X and Yn

P−→ Y , then XnYn
P−→ XY .

5. If Xn ⇝ X and Yn ⇝ c, then XnYn ⇝ cX.

6. If Xn
P−→ X, then g (Xn)

P−→ g(X).

7. If Xn ⇝ X, then g (Xn)⇝ g(X).

Part (3) and (5) combined are known as Slutzky’s theorem. It is worth noting that Xn ⇝ X and Yn ⇝
Y does not in general imply that Xn + Yn ⇝ X + Y . .

5.3 The Law of Large Numbers

5.3.1 The Weak Law of Large Numbers (WLLN)

The weak law of large numbers (also called Khinchin’s law) states that the sample average converges in
probability towards the expected value

Theorem 5.3.1 (Weak Law of Large Numbers). If X1, · · · , Xn are I.I.D random variables with common
mean µ and variance σ2 < ∞, Let Xn = (

∑n
i=1 Xi)/n then

Xn
P→ µ

or
∀ϵ > 0, P (|Xn − µ| > ϵ) → 0

Proof. Using Chebyshev’s inequality, for any ϵ > 0

P (|Xn − µ| > ϵ) ≤ V [Xn − µ]

ϵ2
=

V [Xn]

ϵ2
=

σ2

nϵ2

which tends to be 0 as n → ∞

5.3.2 The Kolmogorov’s Strong Law of Large Number

The strong law of large numbers (also called Kolmogorov’s law) states that the sample average converges
almost surely to the expected value.

Theorem 5.3.2 (Strong Law of Large Numbers). If X1, · · · , Xn are I.I.D random variables with common
mean µ and variance σ2 < ∞, Let Xn = (

∑n
i=1 Xi)/n then

Xn
a.s→ µ

Proof.

5.4 The Central Limit Theorem (CLT)

The law of large numbers says that the distribution of Xn centers near µ, but that does not give us enough
information about Xn. Hence we introduce central limit theorem (CLT). CLT states that, Xn has a distri-
bution which is approximately Normal N (µ, σ2/n).
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Theorem 5.4.1 (Central Limit Theorem). Let X1, · · · , Xn be IID random variable with mean µ and variance
σ2 < ∞. Let Xn = (

∑n
i=1 Xi)/n. Then, the random variable

Zn =
Xn − µ

σ/
√
n

=

√
n(Xn − µ)

σ

converges in distribution to the standard normal random variable as n goes to infinity, that is

Zn
D→ Z or lim

n→∞
P (Zn ≤ x) = Φ(x)

where Φ(x) is the standard normal CDF.

Proof.

5.4.1 Lyapunov CLT

Theorem 5.4.2 (Lyapunov CLT). Suppose X1, . . . , Xn are independent but not necessarily identically dis-
tributed. Let µi = E [Xi], let σi = Var (Xi) and s2n =

∑n
i=1 σ

2
i . Then if we satisfy the Lyapunov condition:

lim
n→∞

1

s3n

n∑
i=1

E |Xi − µ|3 = 0

then

1

sn

n∑
i=1

[Xi − µi]
d−→ N(0, 1).

First notice that if we are dealing with IID case, then we have usual CLT.

Consider the case when the Lyapunov condition is violated. When all the random variables are deterministic
except X1 which has (µ1andσ1 > 0). Then σ3

n = σ3
1 with the third moment E |X1 − µ|3 > 0 so the condition

fails.

Roughly, what can happen in the non-identically distributed case is that only one random variable can
dominate the sum in which case you are not really averaging many things so you do not have a CLT.

5.4.2 CLT with Estimated Variance

We saw that in our typical use case of the CLT (constructing confidence intervals) we needed to know the
variance σ. In practice, we most often do not know this. However, we can estimate this quantity in the usual
way,

σ̂2
n =

1

n− 1

n∑
i=1

(Xi − µ̂)
2

It turns out that we can replace the standard deviation in the CLT by σ̂ and still have the same convergence
in distribution, i.e.

√
n(µ̂− µ)

σ̂n

d−→ N(0, 1)
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Proof. First observe that if we can show that σ
σ̂n

d−→ 1, then an application of Slutsky’s theorem and the
CLT gives us the desired result.

Since square-root is a continuous map, by the continuous mapping theorem, it suffices to show that σ2

σ̂2
n

d−→ 1.

We will instead show the stronger statement that,

σ̂2
n

p−→ σ2,

which implies the desired statement via the continuous mapping theorem (see Larry’s notes for more details).
Note that,

σ̂2
n =

1

n− 1

n∑
i=1

(Xi − µ̂)
2

p−→ 1

n

n∑
i=1

(Xi − µ̂)
2

using the fact that n−1
n → 1. Now,

1

n

n∑
i=1

(Xi − µ̂)
2
=

1

n

n∑
i=1

X2
i −

(
1

n

n∑
i=1

Xi

)2

p−→ E
[
X2
]
− (E[X])2

using the WLLN. This concludes the proof.

5.4.3 Rate of Convergence in CLT

While the central limit theorem is an asymptotic result (i.e. a statement about n → ∞ ) it turns out that
under fairly general conditions we can say how close to a standard normal the average is, in distribution,
for finite values n. Such results are known as Berry Esseen bounds. Roughly, they are proved by carefully
tracking the remainder terms in our Taylor series proof.

Theorem 5.4.3 (Berry-Esseen). Suppose that X1, . . . , Xn ∼ P . Let µ = E [X1] , σ
2 = E

[
(X1 − µ)

2
]
, and

µ3 = E
[
|X1 − µ|3

]
. Let

Fn(x) = P
(√

n(µ̂− µ)

σ
≤ x

)
denote the CDF of the normalized sample average. If µ3 < ∞ then,

sup
x

|Fn(x)− Φ(x)| ≤ 9µ3

σ3
√
n

This bound is roughly saying that if µ3/σ
3 is small then the convergence to normality in distribution happens

quite fast.

5.5 The Delta Method

Theorem 5.5.1 (The Delta Method). Suppose that

√
n (Yn − µ)

σ
⇝ N(0, 1)
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and that g is a differentiable function such that g′(µ) ̸= 0. Then

√
n (g (Yn)− g(µ))

|g′(µ)|σ
⇝ N(0, 1).

In other words,

Yn ≈ N

(
µ,

σ2

n

)
implies that g (Yn) ≈ N

(
g(µ), (g′(µ))

2 σ2

n

)
Proof. The basic idea is simply to use Taylor’s approximation. We know that,

g (Xn) ≈ g(µ) + g′(µ) (Xn − µ)

so that, √
n (g (Xn)− g(µ))

σ
≈ g′(µ)

√
n (Xn − µ)

σ

d−→ N
(
0, [g′(µ)]

2
)
.

To be rigorous however we need to take care of the remainder terms. Here is a more formal proof.

By a rigorous application of Taylor’s theorem we obtain,

√
n (g (Xn)− g(µ))

σ
= g′(µ̃)

√
n (Xn − µ)

σ

where µ̃ is on the line joining µ to µ̂. We know by the WLLN that µ̂
p−→ µ and so µ̃

p−→ µ. Since g is
continuously differentiable, we can use the continuous mapping theorem to conclude that,

g′(µ̃)
p−→ g′(µ).

Now, we apply Slutsky’s theorem to obtain that,

g′(µ̃)

√
n (Xn − µ)

σ

d−→ g′(µ)N(0, 1)
d
= N

(
0, [g′(µ)]

2
)
.

Example 5.5.1. Let X1, . . . , Xn be IID with finite mean µ and finite variance σ2. By the central limit
theorem,

√
n
(
X̄n − µ

)
/σ ⇝ N(0, 1). Let Wn = eX̄n . Thus, Wn = g

(
X̄n

)
where g(s) = es. Since g′(s) = es,

the delta method implies that Wn ≈ N
(
eµ, e2µσ2/n

)
.
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