
Chapter 4

Inequalities

4.1 Probability Inequalities

4.1.1 Markov’s inequality

Theorem 4.1.1 (Markov’s inequality). If X is a non-negative random variable and a > 0, then the probability
that X is at least a is at most the expectation of X divided by a

P (X ≥ a) ≤ E[X]

a

Proof. Suppose X is a positive continuous random variable, we can write

E[X] =

∫ ∞

0

xfX(x)dx

(for a > 0) ≥
∫ ∞

a

xfX(x)dx

(given x > a) ≥
∫ ∞

a

afX(x)dx

= a

∫ ∞

a

fX(x)dx = aP (X ≥ a)

Therefore

aP (X ≥ a) ≤ E[X] ⇒ P (X ≥ a) ≤ E[X]

a

Suppose X is a positive discrete random variable, depending on whether x ≥ a, we can write

E[X] =
∑
x≥a

xP (X = x) +
∑
x≤a

xP (X = x)

≥
∑
x≥a

xP (X = x) + 0

≥
∑
x≥a

aP (X = x) + 0 (since x ≥ a)

= a
∑
x≥a

P (X = x)

= aP (X ≥ a)
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Therefore

aP (X ≥ a) ≤ E[X] ⇒ P (X ≥ a) ≤ E[X]

a

4.1.2 Chebyshev’s inequality

Theorem 4.1.2 (Chebyshev’s inequality). Let X be a random variable with finite variance. Then

P (|X − µ| ≥ kσ) = P (−kσ < X − µ < kσ) ≤ 1

k2

This is a remarkable result. It says that no matter your choice of random variable, as long as it has finite first
two moments, it will not deviate from its mean by more than an explicit multiple of its standard deviation.

Proof. One way to prove Chebyshev’s inequality is to apply Markov’s inequality to the random variable
Y = (X − µ)2 with a = (kσ)2

P (|X − µ| ≥ kσ) = P ((X − µ)2 ≥ k2σ2) = P (Y ≥ a) ≤ E[Y ]

a︸ ︷︷ ︸
Markov’s Inequality

=
E[(X − µ)2]

k2σ2
=

σ2

k2σ2
=

1

k2

P (|X − µ| ≥ kσ) ≤ 1

k2

4.1.3 Hoeffding’s Inequality

Theorem 4.1.3 (Hoeffding’s Inequality). Suppose that X1, . . . , Xn are independent and that, ai ≤ Xi ≤ bi,
and E [Xi] = 0. Then for any ϵ > 0, we have the two results:

P

(
1

n

n∑
i=1

Xi ≥ ϵ

)
≤ exp

(
− 2n2ϵ2∑n

i=1 (bi − ai)
2

)
and

P

(∣∣∣∣∣ 1n
n∑

i=1

Xi

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

(
− 2n2ϵ2∑n

i=1 (bi − ai)
2

)

One can also generalize the theorem in this way:

Let Y1, . . . , Yn be independent observations such that E (Yi) = 0 and ai ≤ Yi ≤ bi. Let ϵ > 0. Then, for any
t > 0

P

(
n∑

i=1

Yi ≥ ϵ

)
≤ exp

(
−tϵ+

n∑
i=1

t2 (bi − ai)
2
/8

)

Proof.
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4.1.4 Mill’s Inequality

Theorem 4.1.4 (Mill’s Inequality). Let Z ∼ N(0, 1). For any t > 0 :

P(|Z| ≥ t) ≤
√

2

π

exp
(
−t2/2

)
t

≤
exp

(
−t2/2

)
t

Proof.

4.1.5 Chernoff bounds

Theorem 4.1.5 (Chernoff bounds). Suppose X is a random variable and we denote its moment generating
function mX(t), then for any a ∈ R

P (X ≥ a) ≤ inf
t>0

e−tamX(t)

P (X ≤ a) ≤ inf
t<0

e−tamX(t)

Proof.
P (X ≥ a) = P (etX ≥ eta), t > 0

P (X ≤ a) = P (etX ≥ eta), t < 0

Notice that etX is a positive random variable ∀t ∈ R. Therefore we can apply Markov’s inequality

P (X ≥ a) = P (etX ≥ eta) ≤ E[etX ]

eta
, t > 0

P (X ≤ a) = P (etX ≥ eta) ≤ E[etX ]

eta
, t < 0

Recall that E[etX ] = mX(t), hence

P (X ≥ a) ≤ mX(t)

eta
, t > 0

P (X ≥ a) ≤ mX(t)

eta
, t < 0

Taking the minimum over t and we get the result

4.1.6 Boole’s Inequality

Theorem 4.1.6 (Boole’s Inequality). For a countable set of events A1, A2, · · · , we have

P

( ∞⋃
i=1

Ai

)
≤

∞∑
i=1

P (Ai)

Proof. We will prove Boole’s inequality using the method of weak induction.
When n = 1, it is obvious that

P (A1) ≤ P (A1)

When n, assume that

P

(
n⋃

i=1

Ai

)
≤

n∑
i=1

P (Ai)

We will prove that this statement applies for n+ 1. Since P (A ∪B) = P (A) + P (B)− P (A ∩B), we have

P

(
n+1⋃
i=1

Ai

)
= P

(
n⋃

i=1

Ai ∪An+1

)
= P

(
n⋃

i=1

Ai

)
+ P (An+1)− P

(
n⋃

i=1

Ai ∩An+1

)
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Since by the first axiom of probability (0 ≤ P (A) ≤ 1)

P

(
n⋃

i=1

Ai ∩An+1

)
> 0

Then we have

P

(
n+1⋃
i=1

Ai

)
≤ P

(
n⋃

i=1

Ai

)
+ P (An+1)

With the assumption above, we could say that

P

(
n+1⋃
i=1

Ai

)
≤

n∑
i=1

P (Ai) + P (An+1) =

n+1∑
i=1

P (Ai)

4.1.7 Bonferroni inequalities

Boole’s inequality may be generalized to find upper and lower bounds on the probability of finite unions of
events. These bounds are known as Bonferroni inequalities. Assume A1, · · · , An ∈ Ω, define

S1 =

n∑
i

P (Ai)

S2 =
∑

1≤i1<i2≤n

P (Ai1 ∩Ai2)

· · ·

Sk =
∑

1≤i1<···<ik≤n

P (Ai1 ∩ · · · ∩Aik)

Theorem 4.1.7 (Bonferroni inequalities).

For odd k ∈ 1, · · · , n

P

(
n⋃

i=1

Ai

)
≤

k∑
j=1

(−1)j−1Sj

For even k ∈ 2, · · · , n

P

(
n⋃

i=1

Ai

)
≥

k∑
j=1

(−1)j−1Sj

4.2 Expectation Inequalities

4.2.1 Cauchy-Schwartz inequality

4.2.2 Jensen’s inequality

Theorem 4.2.1 (Jensen’s inequality). Suppose X is a random variable such that a ≤ X ≤ b. If g : R → R
is convex on [a, b], then

E[g(X)] ≥ g(E[X])

if g is concave, then
E[g(X)] ≤ g(E[X])
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Proof. Assume X is a random variable with expectation µ, and function g is convex. Let l(x) = a + bx be
the equation of the tangent line at x = µ. Then ∀x, g(x) ≥ a + bx. As the figure below, where the red line
is g(x), the blue line is where x = µ, and the green line is l(x)

Figure 4.1

Thus

g(x) ≥ a+ bX ⇒ E[g(x)] ≥ E[a+ bX]

= a+ bE[X] = l(µ)

yet l(µ) = g(µ) as in figure

= g(µ) = g(E[X)]

Now we need to prove the case where g is concave. Recall that concave function is the negative of convex
function, let h(x) = −g(x) be concave function

E[h(x)] = E[−g(x)] = −E[g(x)]

Since E[g(X)] ≥ g(E[X]), −E[g(X)] = E[h(x)] ≤ g(E[X])

From Jensen’s inequality we see that E[X2] ≥ E[X]2. If X is positive, E[1/X] ≥ 1/E[X]. Since log is
concave, E[log(X)] ≤ logE[X]
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